Home News About DMDM Database Statistics Research Publications Contact  

 
Click for a Larger Image
  Domain Name: SIRT1
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The nuclear SIRT1 has been shown to target the p53 tumor suppressor protein for deacetylation to suppress DNA damage, and the cytoplasmic SIRT2 homolog has been shown to target alpha-tubulin for deacetylation for the maintenance of cell integrity.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 7
Total Disease Mutations Found: 0
This domain occurred 7 times on human genes (15 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
substrate binding site
NAD+ binding site
Zn binding site
















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258