Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: Ufm1
Ubiquitin fold modifier 1 protein. This is a family of short ubiquitin-like proteins, that is like neither type-1 or type-2. It is a ubiquitin-fold modifier 1 (Ufm1) that is synthesised in a precursor form of 85 amino-acid residues. In humans the enzyme for Ufm1 is Uba5 and the conjugating enzyme is Ufc1. Prior to activation by Uba5 the extra two amino acids at the C-terminal region of the human pro-Ufm1 protein are removed to expose Gly whose residue is necessary for conjugation to target molecule(s). The mature Ufm1 is conjugated to yet unidentified endogenous proteins. While Ubiquitin and many Ubls possess the conserved C-terminal di-glycine that is adenylated by each specific E1 or E1-like enzyme, respectively, in an ATP-dependent manner, Ufm1(1-83) possesses a single glycine at its C-terminus, which is followed by a Ser-Cys dipeptide in the precursor form of Ufm1. The C-terminally processed Ufm1(1-83) is specifically activated by Uba5, an E1-like enzyme, and then transferred to its cognate Ufc1, an E2-like enzyme.
No pairwise interactions found for the domain Ufm1

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (4 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


No Conserved Features/Sites Found for Ufm1






Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258