Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: Adenylation_DNA_liga
Adenylation domain of Mycobacterium tuberculosis LigD and LigC-like ATP-dependent DNA ligases. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of ATP-dependent DNA ligases similar to Mycobacterium tuberculosis LigC. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Members of this group contain adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains, comprising a catalytic core unit that is common to all members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. LigD consists of a central ATP-dependent DNA ligase catalytic core unit fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. LigD catalyzes the end-healing and end-sealing steps during non-homologous end joining.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 3
Total Disease Mutations Found: 1
This domain occurred 3 times on human genes (6 proteins).



  DNA LIGASE I DEFICIENCY


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
active site
DNA binding site














Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258