Home News About DMDM Database Statistics Research Publications Contact  

Click for a Larger Image
  Domain Name: Isoprenoid_Biosyn_C1
Isoprenoid Biosynthesis enzymes, Class 1. Superfamily of trans-isoprenyl diphosphate synthases (IPPS) and class I terpene cyclases which either synthesis geranyl/farnesyl diphosphates (GPP/FPP) or longer chained products from isoprene precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), or use geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl (C20)-diphosphate as substrate. These enzymes produce a myriad of precursors for such end products as steroids, cholesterol, sesquiterpenes, heme, carotenoids, retinoids, and diterpenes; and are widely distributed among archaea, bacteria, and eukaryota.The enzymes in this superfamily share the same 'isoprenoid synthase fold' and include several subgroups. The head-to-tail (HT) IPPS catalyze the successive 1'-4 condensation of the 5-carbon IPP to the growing isoprene chain to form linear, all-trans, C10-, C15-, C20- C25-, C30-, C35-, C40-, C45-, or C50-isoprenoid diphosphates. Cyclic monoterpenes, diterpenes, and sesquiterpenes, are formed from their respective linear isoprenoid diphosphates by class I terpene cyclases. The head-to-head (HH) IPPS catalyze the successive 1'-1 condensation of 2 farnesyl or 2 geranylgeranyl isoprenoid diphosphates. Cyclization of these 30- and 40-carbon linear forms are catalyzed by class II cyclases. Both the isoprenoid chain elongation reactions and the class I terpene cyclization reactions proceed via electrophilic alkylations in which a new carbon-carbon single bond is generated through interaction between a highly reactive electron-deficient allylic carbocation and an electron-rich carbon-carbon double bond. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions located on opposite walls. These residues mediate binding of prenyl phosphates via bridging Mg2+ ions, inducing proposed conformational changes that close the active site to solvent, stabilizing reactive carbocation intermediates. Generally, the enzymes in this family exhibit an all-trans reaction pathway, an exception, is the cis-trans terpene cyclase, trichodiene synthase. Mechanistically and structurally distinct, class II terpene cyclases and cis-IPPS are not included in this CD.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 5
Total Disease Mutations Found: 3
This domain occurred 5 times on human genes (19 proteins).


 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
substrate binding pocket
substrate-Mg2+ binding si
aspartate-rich region 1
aspartate-rich region 2

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258