Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: MeNeil1_N
N-terminal domain of metazoan Nei-like glycosylase 1 (NEIL1). This family contains the N-terminal domain of metazoan NEIL1. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. NEIL1 recognizes the oxidized pyrimidines 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), thymine glycol (Tg) and 5-hydroxyuracil (5-OHU). However, even though it has weak activity on 8-oxo-7,8-dihydroguanine (8-oxoG), it does show strong preference for the products of its further oxidation: spiroiminodihydantoin and guanidinohydantoin. In addition to this MeNeil1_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zincless finger motif. This characteristic "zincless finger" motif, is a structural equivalent of the zinc finger common to other members of the Fpg/Nei family. Neil1 is one of three homologs found in eukaryotes and its lineage extends back as far as early metazoans.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 5
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (3 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
catalytic residue
putative catalytic residu
putative DNA binding site
putative intercalation tr
H2TH interface












Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258