Home News About DMDM Database Statistics Research Publications Contact  

 
Click for a Larger Image
  Domain Name: NT_POLXc
Nucleotidyltransferase (NT) domain of family X DNA Polymerases. X family polymerases fill in short gaps during DNA repair. They are relatively inaccurate enzymes and play roles in base excision repair, in non-homologous end joining (NHEJ) which acts mainly to repair damage due to ionizing radiation, and in V(D)J recombination. This family includes eukaryotic Pol beta, Pol lambda, Pol mu, and terminal deoxyribonucleotidyl transferase (TdT). Pol beta and Pol lambda are primarily DNA template-dependent polymerases. TdT is a DNA template-independent polymerase. Pol mu has both template dependent and template independent activities. This subgroup belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. These three carboxylate residues are fairly well conserved in this family.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 3
Total Disease Mutations Found: 0
This domain occurred 4 times on human genes (11 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
active site
metal binding triad
NTP binding site
primer binding site




















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258