Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: Peptidase_S41_TRI
Tricorn protease; serine protease family S41. The tricorn protease (TRI), a member of the S41 peptidase family and named for its tricorn-like shape, exists only in some archaea and eubacteria. It has been shown to act as a carboxypeptidase, involved in the degradation of proteasomal products to preferentially yield di- and tripeptides, with subsequent and final degradations to free amino acid residues by tricorn interacting factors, F1, F2 and F3. Tricorn is a hexameric D3-symmetric protease of 720kD, and can self-associate further into a giant icosahedral capsid structure containing twenty copies of the complex. Each tricorn peptidase monomer consists of five structural domains: a six-bladed beta-propeller and a seven-bladed beta-propeller that limit access to the active site, the two domains (C1 and C2) that carry the active site residues, and a PDZ-like domain (proposed to be important for substrate recognition) between the C1 and C2 domains. The active site tetrad residues are distributed between the C1 and C2 domains, with serine and histidine on C1 and serine and glutamate on C2.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (2 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
Active site tetrad
Peptide binding site
Domain interface
























Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258