Home News About DMDM Database Statistics Research Publications Contact  

 
Click for a Larger Image
  Domain Name: PolY_Pol_IV_kappa
DNA Polymerase IV/Kappa. Pol IV, also known as Pol kappa, DinB, and Dpo4, is a translesion synthesis (TLS) polymerase. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Known primarily as Pol IV in prokaryotes and Pol kappa in eukaryotes, this polymerase has a propensity for generating frameshift mutations. The eukaryotic Pol kappa differs from Pol IV and Dpo4 by an N-terminal extension of ~75 residues known as the "N-clasp" region. The structure of Pol kappa shows DNA that is almost totally encircled by Pol kappa, with the N-clasp region augmenting the interactions between DNA and the polymerase. Pol kappa is more resistant than Pol eta and Pol iota to bulky guanine adducts and is efficient at catalyzing the incorporation of dCTP. Bacterial pol IV has a higher error rate than other Y-family polymerases.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 5
Total Disease Mutations Found: 3
This domain occurred 4 times on human genes (7 proteins).



  XERODERMA PIGMENTOSUM, VARIANT TYPE


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
active site
DNA binding site
























Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258