Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: RIO1_like
RIO kinase family; RIO1, RIO3 and similar proteins, catalytic domain. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. RIO1 is present in archaea, bacteria and eukaryotes. In addition, RIO3 is present in multicellular eukaryotes. RIO1 is essential for survival and is required for 18S rRNA processing, proper cell cycle progression and chromosome maintenance. The biological substrates for RIO1 are unknown. The function of RIO3 is also unknown.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 3
Total Disease Mutations Found: 0
This domain occurred 4 times on human genes (5 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
ATP binding site















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258