Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: RNase_HII
Ribonuclease H (RNase H) type II family (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). Ribonuclease H (RNase H) is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations. The enzyme can be found in bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes, but no prokaryotic genome contains the combination of only RNase HI and HIII. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. It appears that type I and type II RNases H also have overlapping functions in cells, as over-expression of Escherichia coli RNase HII can complement an RNase HI deletion phenotype in E. coli.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (1 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
active site
RNA/DNA hybrid binding si

















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258