Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: Rhizobitoxine-FADS-l
This CD includes the dihydrorhizobitoxine fatty acid desaturase (RtxC) characterized in Bradyrhizobium japonicum USDA110, and other related proteins. Dihydrorhizobitoxine desaturase is reported to be involved in the final step of rhizobitoxine biosynthesis. This domain family appears to be structurally related to the membrane fatty acid desaturases and the alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXX(X)HH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 2
Total Disease Mutations Found: 0
This domain occurred 2 times on human genes (3 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
putative di-iron ligands
















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258