Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: SAHH
S-Adenosylhomocysteine Hydrolase, NAD-binding and catalytic domains. S-adenosyl-L-homocysteine hydrolase (SAHH, AdoHycase) catalyzes the hydrolysis of S-adenosyl-L-homocysteine (AdoHyc) to form adenosine (Ado) and homocysteine (Hcy). The equilibrium lies far on the side of AdoHyc synthesis, but in nature the removal of Ado and Hyc is sufficiently fast, so that the net reaction is in the direction of hydrolysis. Since AdoHyc is a potent inhibitor of S-adenosyl-L-methionine dependent methyltransferases, AdoHycase plays a critical role in the modulation of the activity of various methyltransferases. The enzyme forms homotetramers, with each monomer binding one molecule of NAD+.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 2
Total Disease Mutations Found: 2
This domain occurred 3 times on human genes (7 proteins).



  HYPERMETHIONINEMIA WITH S-ADENOSYLHOMOCYSTEINE HYDROLASE DEFICIENCY


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
NAD binding site
ligand binding site
homotetramer interface
catalytic site




















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258