Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: UGGPase
UGGPase catalyzes the synthesis of UDP-Glucose/UDP-Galactose. UGGPase: UDP-Galactose/Glucose Pyrophosphorylase catalyzes the reversible production of UDP-Glucose/UDP-Galactose and pyrophosphate (PPi) from Glucose-1-phosphate/Galactose-1-phosphate and UTP. Its dual substrate specificity distinguishes it from the single substrate enzyme UDP-glucose pyrophosphorylase. It may play a key role in the galactose metabolism in raffinose oligosaccharide (RFO) metabolizing plants. RFO raffinose is a major photoassimilate and is a galactosylderivative of sucrose (Suc) containing a galactose (Gal) moiety. Upon arriving at the sink tissue, the Gal moieties of the RFOs are initially removed by alpha-galactosidase and then are phosphorylated to Gal-1-P. Gal-1-P is converted to UDP-Gal. The UDP-Gal is further metabolized to UDP-Glc via an epimerase reaction. The UDP-Glc can be directly utilized in cell wall metabolism or in Suc synthesis. However, for the Suc synthesis UDP-Glc must be further metabolized to Glc-1-P. This can be carried out either by the UGPase in the reverse direction or by the dual substrate PPase itself operating in the reverse direction. According to the latter possibility, the three-step pathway of Gal-1-P to Glc-1-P could be carried out by a single PPase, functioning sequentially in reverse directions separated by the epimerase reaction.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 2
Total Disease Mutations Found: 0
This domain occurred 3 times on human genes (3 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
Substrate Binding Site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258