Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: AAG
Alkyladenine DNA glycosylase catalyzes the first step in base excision repair. Alkyladenine DNA glycosylase (AAG), also known as 3-methyladenine DNA glycosylase, catalyzes the first step in base excision repair (BER) by cleaving damaged DNA bases within double-stranded DNA to produce an abasic site. AAG bends DNA by intercalating between the base pairs, causing the damaged base to flip out of the double helix and into the enzyme active site for cleavage. Although AAG represents one of six DNA glycosylase classes, it lacks the helix-hairpin-helix active site motif associated with other BER glycosylases and is structurally distinct from them.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (3 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
DNA binding site
active site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258