Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: GDPD
Glycerophosphodiester phosphodiesterase domain as found in prokaryota and eukaryota, and similar proteins. The typical glycerophosphodiester phosphodiesterase domain (GDPD) consists of a TIM barrel and a small insertion domain named the GDPD-insertion (GDPD-I) domain, which is specific for GDPD proteins. This family corresponds to both typical GDPD domain and GDPD-like domain which lacks the GDPD-I region. Members in this family mainly consist of a large family of prokaryotic and eukaryotic glycerophosphodiester phosphodiesterases (GP-GDEs, EC, and a number of uncharacterized homologs. Sphingomyelinases D (SMases D) (sphingomyelin phosphodiesterase D, EC from spider venom, SMases D-like proteins, and phospholipase D (PLD) from several pathogenic bacteria are also included in this family. GDPD plays an essential role in glycerol metabolism and catalyzes the hydrolysis of glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols are major sources of carbon and phosphate. Its catalytic mechanism is based on the metal ion-dependent acid-base reaction, which is similar to that of phosphoinositide-specific phospholipases C (PI-PLCs, EC Both, GDPD related proteins and PI-PLCs, belong to the superfamily of PI-PLC-like phosphodiesterases.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 1
Total Disease Mutations Found: 0
This domain occurred 7 times on human genes (7 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
catalytic site
metal binding site
active site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258