Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: GDPD_EcGlpQ_like
Glycerophosphodiester phosphodiesterase domain of Escherichia coli (GlpQ) and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Escherichia coli periplasmic glycerophosphodiester phosphodiesterase (GP-GDE, EC 3.1.4.46), GlpQ, and similar proteins. GP-GDE plays an essential role in the metabolic pathway of E. coli. It catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols, which are major sources of carbon and phosphate. E. coli possesses two major G3P uptake systems: Glp and Ugp, which contain genes coding for two different GP-GDEs. GlpQ gene from the E. coli glp operon codes for a periplasmic phosphodiesterase GlpQ, which is the prototype of this family. GlpQ is a dimeric enzyme that hydrolyzes periplasmic glycerophosphodiesters, such as glycerophosphocholine (GPC), glycerophosphoethanolanmine (GPE), glycerophosphoglycerol (GPG), glycerophosphoinositol (GPI), and glycerophosphoserine (GPS), to the corresponding alcohols and G3P, which is subsequently transported into the cell through the GlpT transport system. Ca2+ is required for the enzymatic activity of GlpQ. This family also includes a surface-exposed lipoprotein, protein D (HPD), from Haemophilus influenza Type b and nontypeable strains, which shows very high sequence similarity with E. coli GlpQ. HPD has been characterized as a human immunoglobulin D-binding protein with glycerophosphodiester phosphodiesterase activity. It can hydrolyze phosphatidylcholine from host membranes to produce free choline on the lipopolysaccharides on the surface of pathogenic bacteria.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 3 times on human genes (3 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
catalytic site
metal binding site
active site
















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258