Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: KCNQC3-Ank-G_bd
Ankyrin-G binding motif of KCNQ2-3. Interactions with ankyrin-G are crucial to the localisation of voltage-gated sodium channels (VGSCs) at the axon initial segment and for neurons to initiate action potentials. This conserved 9-amino acid motif ((V/A)P(I/L)AXXE(S/D)D) is required for ankyrin-G binding and functions to localise sodium channels to a variety of 'excitable' membrane domains both inside and outside of the nervous system. This motif has also been identified in the potassium channel 6TM proteins KCNQ2 and KCNQ3, that correspond to the M channels that exert a crucial influence over neuronal excitability. KCNQ2/KCNQ3 channels are preferentially localised to the surface of axons both at the axonal initial segment and more distally, and this axonal initial segment targeting of surface KCNQ channels is mediated by these ankyrin-G binding motifs of KCNQ2 and KCNQ3. KCNQ3 is a major determinant of M channel localisation to the AIS, rather than KCNQ2. Phylogenetic analysis reveals that anchor motifs evolved sequentially in chordates (NaV channel) and jawed vertebrates (KCNQ2/3).
No pairwise interactions found for the domain KCNQC3-Ank-G_bd

Total Mutations Found: 4
Total Disease Mutations Found: 0
This domain occurred 2 times on human genes (8 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


No Conserved Features/Sites Found for KCNQC3-Ank-G_bd








Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258