Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: MutL_Trans_MLH3
MutL_Trans_MLH3: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to yeast and human MLH3 (MutL homologue 3). MLH3 belongs to the DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. MLH1 forms heterodimers with MLH3. The MLH1-MLH3 complex plays a role in meiosis. A role for hMLH1-hMLH3 in DNA mismatch repair (MMR) has not been established. It has been suggested that hMLH3 may be a low risk gene for colorectal cancer; however there is little evidence to support it having a role in classical HNPCC.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 12
Total Disease Mutations Found: 10
This domain occurred 3 times on human genes (9 proteins).



  COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 2
  MISMATCH REPAIR CANCER SYNDROME, INCLUDED


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
ATP binding site












Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258