Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: POLBc
DNA polymerase type-B family catalytic domain. DNA-directed DNA polymerases elongate DNA by adding nucleotide triphosphate (dNTP) residues to the 5'-end of the growing chain of DNA. DNA-directed DNA polymerases are multifunctional with both synthetic (polymerase) and degradative modes (exonucleases) and play roles in the processes of DNA replication, repair, and recombination. DNA-dependent DNA polymerases can be classified in six main groups based upon their phylogenetic relationships with E. coli polymerase I (class A), E. coli polymerase II (class B), E. coli polymerase III (class C), euryarchaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB, and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family B DNA polymerases include E. coli DNA polymerase II, some eubacterial phage DNA polymerases, nuclear replicative DNA polymerases (alpha, delta, epsilon, and zeta), and eukaryotic viral and plasmid-borne enzymes. DNA polymerase is made up of distinct domains and sub-domains. The polymerase domain of DNA polymerase type B (Pol domain) is responsible for the template-directed polymerization of dNTPs onto the growing primer strand of duplex DNA that is usually magnesium dependent. In general, the architecture of the Pol domain has been likened to a right hand with fingers, thumb, and palm sub-domains with a deep groove to accommodate the nucleic acid substrate. There are a few conserved motifs in the Pol domain of family B DNA polymerases. The conserved aspartic acid residues in the DTDS motifs of the palm sub-domain is crucial for binding to divalent metal ion and is suggested to be important for polymerase catalysis.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 4 times on human genes (10 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
active site
metal-binding site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258