Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: SIR2
SIR2 superfamily of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins, also known as sirtuins, are found in all eukaryotes and many archaea and prokaryotes and have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The oligomerization state of Sir2 appears to be organism-dependent, sometimes occurring as a monomer and sometimes as a multimer. Also included in this superfamily is a group of uncharacterized Sir2-like proteins which lack certain key catalytic residues and conserved zinc binding cysteines.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 8
Total Disease Mutations Found: 0
This domain occurred 8 times on human genes (18 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

No Conserved Features/Sites Found for SIR2

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258