Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: DNA_Glycosylase_C
DNA glycosylase (MutY in bacteria and hMYH in humans) is responsible for repairing misread A*oxoG residues to C*G by removing the inappropriately paired adenine base from the DNA backbone. It belongs to the Nudix hydrolase superfamily and is important for the repair of various genotoxic lesions. Enzymes belonging to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity. They are also recognized by a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V). However, DNA glycosylase does not seem to contain this signature motif. DNA glycosylase consists of 2 domains: the N-terminal domain contains the catalytic properties of the enzyme and the C-terminal domain affects substrate (oxoG) binding and enzymatic turnover. The C-terminal domain is highly similar to MutT, based on secondary structure and topology, despite low sequence identity. MutT sanitizes the nucleotide precursor pool by hydrolyzing oxo-dGTP to oxo-dGMO and inorganic pyrophosphate. The similarity strongly suggests that the two proteins share a common evolutionary origin.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 24
Total Disease Mutations Found: 20
This domain occurred 1 times on human genes (7 proteins).



  ENDOMETRIAL CANCER, INCLUDED
  FAMILIAL ADENOMATOUS POLYPOSIS 2
  GASTRIC CANCER, SOMATIC


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
DNA binding and oxoG reco














Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258