Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: DRE_TIM_PC_TC_5S
Pyruvate carboxylase and Transcarboxylase 5S, carboxyltransferase domain. This family includes the carboxyltransferase domains of pyruvate carboxylase (PC) and the transcarboxylase (TC) 5S subunit. Transcarboxylase 5S is a cobalt-dependent metalloenzyme subunit of the biotin-dependent transcarboxylase multienzyme complex. Transcarboxylase 5S transfers carbon dioxide from the 1.3S biotin to pyruvate in the second of two carboxylation reactions catalyzed by TC. The first reaction involves the transfer of carbon dioxide from methylmalonyl-CoA to the 1.3S biotin, and is catalyzed by the 12S subunit. These two steps allow a carboxylate group to be transferred from oxaloacetate to propionyl-CoA to yield pyruvate and methylmalonyl-CoA. The catalytic domain of transcarboxylase 5S has a canonical TIM-barrel fold with a large C-terminal extension that forms a funnel leading to the active site. Transcarboxylase 5S forms a homodimer and there are six dimers per complex. In addition to the catalytic domain, transcarboxylase 5S has several other domains including a carbamoyl-phosphate synthase domain, a biotin carboxylase domain, a carboxyltransferase domain, and an ATP-grasp domain. Pyruvate carboxylase, like TC, is a biotin-dependent enzyme that catalyzes the carboxylation of pyruvate to produce oxaloacetate. In mammals, PC has critical roles in gluconeogenesis, lipogenesis, glyceroneogenesis, and insulin secretion. Inherited PC deficiencies are linked to serious diseases in humans such as lactic acidemia, hypoglycemia, psychomotor retardation, and death. PC is a single-chain enzyme and is active only in its homotetrameric form. PC has three domains, an N-terminal biotin carboxylase domain, a carboxyltransferase domain (this alignment model), and a C-terminal biotin-carboxyl carrier protein domain. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - whi
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 9
Total Disease Mutations Found: 8
This domain occurred 3 times on human genes (13 proteins).


 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
active site
catalytic residues
metal binding site
homodimer binding site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258