Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: ENTH_epsin_related
ENTH domain, Epsin Related family; composed of hypothetical proteins containing an ENTH-like domain. The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. A set of proteins previously designated as harboring an ENTH domain in fact contains a highly similar, yet unique module referred to as an AP180 N-terminal homology (ANTH) domain. ENTH and ANTH (E/ANTH) domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. E/ANTH domains bind both inositol phospholipids and proteins and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. E/ANTH-bearing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the trans-Golgi network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 1 times on human genes (1 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
putative Ins(1,4,5)p3 bin











Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258