Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: NR_LBD_VDR
The ligand binding domain of vitamin D receptors, a member of the nuclear receptor superfamily. The ligand binding domain of vitamin D receptors (VDR): VDR is a member of the nuclear receptor (NR) superfamily that functions as classical endocrine receptors. VDR controls a wide range of biological activities including calcium metabolism, cell proliferation and differentiation, and immunomodulation. VDR is a high affinity receptor for the biologically most active Vitamin D metabolite, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). The binding of the ligand to the receptor induces a conformational change of the ligand binding domain (LBD) with consequent dissociation of corepressors. Upon ligand binding, VDR forms heterodimer with the retinoid X receptor (RXR) that binds to vitamin D response elements (VDREs), recruits coactivators. This leads to the expression of a large number of genes. Approximately 200 human genes are considered to be primary targets of VDR and even more genes are regulated indirectly. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, VDR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD).
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 122
Total Disease Mutations Found: 69
This domain occurred 22 times on human genes (101 proteins).



  COLON CANCER, SOMATIC
  LIPODYSTROPHY, FAMILIAL PARTIAL, TYPE 3
  MICROPHTHALMIA, SYNDROMIC 12
  THYROID HORMONE RESISTANCE, GENERALIZED
  THYROID HORMONE RESISTANCE, GENERALIZED, AUTOSOMAL DOMINANT
  THYROID HORMONE RESISTANCE, GENERALIZED, AUTOSOMAL RECESSIVE
  THYROID HORMONE RESISTANCE, SELECTIVE PITUITARY
  THYROID HORMONE RESISTANCE, SELECTIVE PITUITARY, INCLUDED
  VARIANT OF UNKNOWN SIGNIFICANCE
  VITAMIN D-DEPENDENT RICKETS, TYPE 2A


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
ligand binding site
coactivator recognition s















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258