Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: PX_SNX14
The phosphoinositide binding Phox Homology domain of Sorting Nexin 14. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX14 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. It is expressed in the embryonic nervous system of mice, and is co-expressed in the motoneurons and the anterior pituary with Islet-1. SNX14 shows a similar domain architecture as SNX13, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 4
Total Disease Mutations Found: 2
This domain occurred 14 times on human genes (20 proteins).



  OSTEOPETROSIS, AUTOSOMAL RECESSIVE 8


Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
phosphoinositide binding











Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258