Home News About DMDM Database Statistics Research Publications Contact  

 
  Domain Name: nitrilase
Nitrilase superfamily, including nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes. This superfamily (also known as the C-N hydrolase superfamily) contains hydrolases that break carbon-nitrogen bonds; it includes nitrilases, cyanide dihydratases, aliphatic amidases, N-terminal amidases, beta-ureidopropionases, biotinidases, pantotheinase, N-carbamyl-D-amino acid amidohydrolases, the glutaminase domain of glutamine-dependent NAD+ synthetase, apolipoprotein N-acyltransferases, and N-carbamoylputrescine amidohydrolases, among others. These enzymes depend on a Glu-Lys-Cys catalytic triad, and work through a thiol acylenzyme intermediate. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. These oligomers include dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers, as well as variable length helical arrangements and homo-oligomeric spirals. These proteins have roles in vitamin and co-enzyme metabolism, in detoxifying small molecules, in the synthesis of signaling molecules, and in the post-translational modification of proteins. They are used industrially, as biocatalysts in the fine chemical and pharmaceutical industry, in cyanide remediation, and in the treatment of toxic effluent. This superfamily has been classified previously in the literature, based on global and structure-based sequence analysis, into thirteen different enzyme classes (referred to as 1-13). This hierarchy includes those thirteen classes and a few additional subfamilies. A putative distant relative, the plasmid-borne TraB family, has not been included in the hierarchy.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 4
Total Disease Mutations Found: 0
This domain occurred 7 times on human genes (11 proteins).




Tips:
 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.



Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  


Feature Name:Total Found:
active site
catalytic triad
dimer interface




















Weblogos are Copyright (c) 2002 Regents of the University of California




Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258