Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: R-amidase_like
Pseudomonas sp. MCI3434 R-amidase and related proteins (putative class 13 nitrilases). Pseudomonas sp. MCI3434 R-amidase hydrolyzes (R,S)-piperazine-2-tert-butylcarboxamide to form (R)-piperazine-2-carboxylic acid. It does so with strict R-stereoselectively. Its preferred substrates are carboxamide compounds which have the amino or imino group connected to their beta- or gamma-carbon. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), class 13 represents proteins that at the time were difficult to place in a distinct similarity group. It has been suggested that this subgroup represents a new class. Members of the nitrilase superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Native R-amidase however appears to be a monomer.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 0
Total Disease Mutations Found: 0
This domain occurred 2 times on human genes (2 proteins).

 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
putative active site
catalytic triad
putative dimer interface

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258