Home News About DMDM Database Statistics Research Publications Contact  

  Domain Name: enoyl_red
enoyl reductase of polyketide synthase. Putative enoyl reductase of polyketide synthase. Polyketide synthases produce polyketides in step by step mechanism that is similar to fatty acid synthesis. Enoyl reductase reduces a double to single bond. Erythromycin is one example of a polyketide generated by 3 complex enzymes (megasynthases). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding.
No pairwise interactions are available for this conserved domain.

Total Mutations Found: 22
Total Disease Mutations Found: 4
This domain occurred 19 times on human genes (31 proteins).


 If you've navigated here from a protein, hovering over a position on the weblogo will display the corresponding protein position for that domain position.

 The histograms below the weblogo indicate mutations found on the domain. Red is for disease (OMIM) and blue is for SNPs.

 Functional Features are displayed as orange boxes under the histograms. You can choose which features are displayed in the box below.

Range on the Protein:  

   Protein ID            Protein Position

Domain Position:  

Feature Name:Total Found:
NAD(P) binding site

Weblogos are Copyright (c) 2002 Regents of the University of California

Please Cite: Peterson, T.A., Adadey, A., Santana-Cruz ,I., Sun, Y., Winder A, Kann, M.G., (2010) DMDM: Domain Mapping of Disease Mutations. Bioinformatics 26 (19), 2458-2459.

   |   1000 Hilltop Circle, Baltimore, MD 21250   |   Department of Biological Sciences   |   Phone: 410-455-2258